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The ChaMPlane project (Grindlay et al. 2005) is a survey to detect and optically
identify low-luminosity X-ray point sources in the Galactic plane, with the goal of charac-
terizing the Galactic distribution of accretion-powered sources such as X-ray binaries and
cataclysmic variable (CV) stars. X-ray data were collected from archival deep (> 20 ks)
Galactic plane (|b| < 12◦) fields, while photometric V , R, I, and Hα data were obtained
using CTIO and KPNO 4.0 m telescopes. Multi-fiber spectroscopy was obtained of stars
with Hα excesses to separate CVs from other objects such as chromospherically active
red dwarfs based on Doppler broadening of the Hα line (Rogel et al. 2006). A number of
potential CV candidates were found, including a bright one with R ≈ 14 mag which coin-
cided with the emission object HBHA -0201-01 (Kohoutek & Wehmeyer 1997). Figure 1
shows the spectrum of this star taken with the WIYN 3.5 m telescope. The hydrogen and
helium emission lines are overlaid on a very late-type stellar continuum, indicating a hot
source in proximity to a cool star, suggestive of a CV or other accretion-powered system.

Meanwhile, Williams (2005) presented a significantly revised position of NSV 11749,
a star discovered to be variable by Luyten (1937). This position corresponds to the
CV candidate discussed above. Williams derived photometry from plates in the Harvard
collection, showing an outburst circa 1903 reaching a photographic magnitude of 12.5,
then slowly fading to go below the plate limit, mpg ≈ 15 mag, by 1912. It remained below
this limit through 1988, the end of the plate sequence, though it was detected on a few
deeper plates at ∼17 mag. Based on this outburst, Williams suggested that NSV 11749
is either a slow nova or a FU Orionis pre-main sequence star.

Miller Bertolami et al. (2011) compared the outburst light curve of NSV 11749 with
the outbursts of V605 Aql and V4334 Sgr, two objects widely accepted as “born-again”
asymptotic giant branch (AGB) stars. In these stars, a very late thermal pulse ignites
helium burning in a star transitioning from the AGB to the top of the white dwarf
sequence, causing the star to return temporarily to the tip of the AGB. Based on light
curve similarities and fits of thermal pulse models to the observations, Miller Bertolami
et al. (2011) suggested that NSV 11749 is also a born-again AGB star. Bond & Kasliwal
(2012, hereafter “BK12”) presented optical and infrared spectra of NSV 11749 showing
Balmer and helium emission lines on a continuous spectrum of a late type star (they
estimated M1-M2 III spectral type), much like our Figure 1. These spectra contrast
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sharply with that of the born-again star V605 Aql by Clayton et al. (2006), which shows
high excitation lines of helium, carbon and oxygen, indicative of a hot, compact, hydrogen-
poor object. While both objects underwent outbursts about a century ago, these recent
spectra show that the born-again AGB star has returned to its former state as a young
white dwarf, albeit dust-enshrouded, while NSV 11749 has the spectral characteristics
of an accreting compact binary. Thus, BK12 clearly showed that NSV 11749 is not a
born-again AGB star.

BK12 argued that NSV 11749 is a symbiotic star, a compact object (likely a white
dwarf) accreting matter from a giant star, rather than a dwarf star in a traditional cat-
aclysmic variable.1 They based this distinction on the presence of the broad emission
feature at 6825 Å due to Raman scattering by neutral hydrogen, a feature only seen in
symbiotic stars (hereafter “SSs”). Unfortunately, this feature is just off the red end of our
spectrum, so we cannot confirm its presence. However, our spectrum has much higher
signal-to-noise ratio than that of BK12, enabling us to see more clearly the bands of
molecular titanium oxide in the stellar continuum. The lower panel of Figure 1 shows our
spectrum divided by template spectra of M3, M4, and M5 III stars from Pickles (1998).
A spectrum between M3 and M4 provides the best match, leaving little residual signature
of the TiO bands. A smoothed version of the resulting curve is the inverse of the function
needed to flux-calibrate our original spectrum, convolved with the interstellar reddening
function.

Figure 1. Top-left: the ChaMPlane spectrum of NSV 11749 (not flux calibrated). Top-right: a

detail of the Hα line. Bottom: the NSV 11749 spectrum divided by template spectra of M3, M4, and

M5 III stars (lower, middle, and upper curves, respectively).

BK12 matched their spectra with templates of M1 and M2 giants using a reddening
function for E(B − V ) = 0.75 mag. Had they used an M3 or M4 template, a lower
reddening would be needed, trending toward the value of E(B − V ) = 0.67 mag given
by the dust maps of Schlegel, Finkbeiner & Davis (1998) at the location of NSV 11749,

1The powerful outburst of 1903 resembles the 1980 outburst of the symbiotic nova PU Vul shown in Figure 4 of Miko-
lajewska (2010), who provides a review of this rare subclass of symbiotic stars.
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(l, b) = (34.◦8313,−3.◦5974), or E(B−V ) = 0.57 mag from the recalibration by Schlafly &
Finkbeiner (2011). The spectral type difference may also reflect a change in the intrinsic
color of the red giant if the star is a long period variable; our spectrum was taken on 2007
June 20 versus 2012 for BK12.

Reddenings from the dust maps are uncertain at low latitudes, so we compared the
R − I color of NSV 11749 (see below) with de-reddened R − I colors of M3 and M4
giants in the Bright Star Catalog (Hoffleit & Jaschek 1991). This suggested an even lower
reddening, E(B − V ) ≈ 0.1 mag, but the large range in intrinsic color at fixed spectral
type and the effect of the hot companion star on the intrinsic R − I of the red giant in
NSV 11749 leave a very large uncertainty in this value. As usual, finding the reddening
of a low latitude object is difficult.

The Williams (2005) photometry suggests NSV 11749 has been in a quiescent state
since the nova outburst 110 years ago, but no time-series photometry is available since
1988, the last plate in Williams’ sequence. We therefore undertook CCD photometry of
NSV 11749 to provide a clearer understanding of its nature in quiescence, to confirm that
its photometric behavior is consistent with its spectroscopic identification as a symbiotic
nova, and to seek the orbital period as suggested by BK12. Here, we report the results of
the first six months of photometric monitoring.

Images were acquired with the Bowling Green State University 0.5 m f/8 Cassegrain
telescope and Apogee AP6e CCD camera from 2012 May 16 through July 11. The camera
has a 21 × 21 arcmin field of view with 1.2 arcsec pixels. Images were taken in V (180 s)
and I (120 s) and the star was visited at least twice each night, with each visit consisting
of three images per filter, dithered to prevent stars from repeatedly landing on bad pixels.
On one night, we visited the field ten times over an interval of 4.5 hours, and on two
nights we visited continuously over 1-2 hours to search for short term variations. Prelim-
inary photometry of the Bowling Green (BG) images indicated the star was variable, but
exhibited a slow brightening over the 60 day interval with little short term variation.

We therefore initiated observations with the PROMPT #5 0.4 m telescope (P5; Re-
ichart et al. 2005) located on Cerro Tololo in Chile, which we used from 2012 July 24
through November 17. We visited the field one night each week, taking three images each
in V (60 s), R (30 s), and I (20 s). The darker skies in Chile yielded higher quality V
images than we obtained from BG, though the camera field of view is smaller (10 × 10
arcmin). The images from BG and P5 were processed to remove the bias level and dark
current, and to flatten sensitivity differences across the chip.

The images were analyzed using the DAOPHOT II point-spread function fitting pho-
tometry package (Stetson 1987). Combined use of DAOPHOT and ALLSTAR located
all possible stars on each image. Because the seeing and sky background varied from one
image to the next, the number of stars detected also varied. To create a more uniform
object list, the best quality images in V , R and I were combined using MONTAGE to
produce master images with high signal-to-noise. The DAOPHOT/ALLSTAR procedures
were then applied to these master images, giving a master list of stars in the field. Stars
were matched on each frame using DAOMASTER, and ALLFRAME (Stetson 1994) was
run on all images using the master list from the respective MONTAGE images to produce
both time-averaged and time series photometry for each star detected in the field.

Table 1. Photometric Calibration.

Date Telescope rmsV rmsR rmsI Nstd Nfld NSS

2012 Jul 10 BG 0.027 ... 0.031 76 13 12
2012 Jul 11 BG 0.043 ... 0.041 41 6 12
2012 Nov 17 P5 0.022 0.021 0.023 60 8 3
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On two photometric nights in BG and one at P5, images of standard stars (Landolt
1992) were taken over a range of airmass throughout the night. The instrumental aperture
magnitudes of these standard stars, along with their V − I color and airmass, X, were
used to do least-squares fits,

m − M = c0 + c1X + c2(V − I), (1)

where m is the instrumental magnitude and M is the standard magnitude. For July 11,
a linear time dependent term was added. Table 1 shows the dates of each night, the rms
scatter of each fit, the number of standard stars observed, the number of independent
visits to standard fields, and the number of observations made of the SS field. We then
used the “ci” coefficients to standardize the instrumental magnitudes of 15 uncrowded,
non-variable stars in the SS field to serve as comparison stars for differential photometry of
the variable stars. Given the details of our calibration, we estimate the final photometric
zero-points on the comparison stars to be accurate to 0.01-0.02 mag in V and I and
to ∼0.04 mag in R. The larger value for R reflects that data were taken on a single
night at high airmass. The quality of our zero-points are demonstrated by comparing
our V photometry to that in the APASS database.2 We find a median difference of
VBG − VAPASS = −0.012 ± 0.011 mag for 14 stars in common, with the uncertainties of
the individual magnitudes being 3-5 times larger in APASS than in ours.

Figure 2. A color-magnitude diagram of the 10 × 10 arcmin P5 field around NSV 11749. The error

bars and reddening vector are described in the text. The red circles and numbers mark the positions of

the variable stars in Table 3; NSV 11749 is #417.

We also used these results to calibrate the time-averaged ALLFRAME photometry
from P5 and produce a color-magnitude diagram of the field, which is shown in Figure 2.
There are 7867 stars in total, of which 547 are brighter than V = 17 mag. The error
bars along the right show mean errors in magnitude and color for stars binned by V

2Data Release 7, 2013 by the AAVSO, see http://www.aavso.org/apass.
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magnitude. The pattern of bluer, main sequence disk stars and redder stars that include
red giants is commonly seen in fields close to the Galactic plane (e.g., Ortolani, Bica &
Barbuy 1993). The reddening vector is based on E(B −V ) = 0.67 mag at the location of
NSV 11749 (Schlegel, Finkbeiner & Davis 1998). There is no evidence for strong variations
in reddening across our field, either from the dust maps, from inspection of our images,
or from the the color-magnitude diagram.

When compiling photometry using DAOMASTER, each star is labeled with a variabil-
ity index. Stars with the highest variability index were flagged in each of the five data
sets (V and I from BG, and V , R, and I from P5), and these lists were compared to
find stars in common. Through this method, we detected nine variable stars; NSV 11749
was below our initial detection threshold, but we extracted its photometry and found it
to have low-level variations. Equatorial coordinates for each star were estimated from
the Two-Micron All Sky Survey images (Skrutskie et al. 2006). These and the (x, y)
coordinates on a master image3 are shown in Table 2, along with a column indicating
in which fields of view the star was visible. We searched the SIMBAD database at the
equatorial coordinates of each star (see Table 2), and followed up named objects with the
International Variable Star Index.4 The results are discussed below, star by star.

Table 2. Variable Star Coordinates.

ID# Xpix Ypix RA (J2000) Dec (J2000) FOV Name

417 485.1 547.1 19:07:42.4 +00:02:51 BG + P5 NSV 11749
1 460.8 331.4 19:07:44.3 +00:07:10 BG + P5 ASAS 190744+0007.1

26 325.9 414.7 19:07:55.1 +00:05:30 BG + P5
27 546.4 381.8 19:07:37.5 +00:06:09 BG + P5 IRAS 19050+0001
62 485.0 571.2 19:07:42.4 +00:02:22 BG + P5
85 637.9 832.3 19:07:30.2 –00:02:51 BG

132 885.6 784.6 19:07:10.4 –00:01:55 BG
244 700.9 640.0 19:07:25.1 +00:00:59 BG + P5
255 407.9 412.6 19:07:48.5 +00:05:32 BG + P5
419 800.6 655.5 19:07:17.2 +00:00:40 BG

We paired each variable with as many of the comparison stars as possible (Ncomp), then
calculated the differential photometry of each pair from the ALLFRAME time-series data,
and transformed the result to the standard V RI system, taking the median magnitude
of the Ncomp measurements to represent the magnitude of that variable on that image.
We adopted the standard error of the Ncomp measurements as the random uncertainty
in that magnitude. The calibrated time series photometry for each variable is available
electronically. Figures 3–6 show the time series after multiple observations taken on a
single night were medianed; the error bar on a given point shows the standard error of
the Nobs magnitudes measured that night.

Table 3 shows the median, maximum (max) and minimum (min) brightness in V and I
for each star, along with its median color. From Table 3 it is clear that all ten variables are
extremely red, and the color-magnitude diagram shows that they are among the reddest
stars in this field. As the bluest of the ten variables, NSV 11749, with its very late-type
stellar continuum, sets a temperature upper limit on the other variables. Thus, they are
likely to consist of, or contain, red giant or red dwarf stars. Unfortunately, only NSV 11749
was the target of a ChaMPlane spectrum, so no spectral information is available for the
other variable stars.

3A FITS format image corresponding to these (x, y) coordinates is available at
http://physics.bgsu.edu/~layden/publ.htm along with other data products from this research. The files are also available
as 6071-d1.tar.gz from the IBVS website.

4The VSX is available at http://www.aavso.org/vsx/.
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Inspection of the light curves provided approximate periods for most stars, and the
ones with more regular periods were investigated using the phase dispersion minimization
method. Also, for some stars we applied the template fitting program of Layden (1998) to
fit ten standard light curve shapes to the data for each star to provide a best-fit amplitude
and to provide an objective means for classifying the variability type based on light curve
shape.

Table 3. Photometric Characteristics.

ID 〈V 〉 Vmax Vmin 〈I〉 Imax Imin 〈V − I〉 Period Type

417 15.75 15.61 16.17 12.76 12.70 12.84 2.99 ? Z And
1 11.69 11.55 11.84 7.43 7.25 7.51 4.26 40-50 Lb

26 13.85 13.51 14.17 10.13 9.91 10.25 3.72 73 ± 2 SR
27 15.45 15.00 17.16 9.21 9.01 10.31 6.24 > 200 M
62 14.82 14.48 15.32 10.69 10.57 10.97 4.13 58/116 SRa/EW?
85 14.94 14.84 15.09 10.78 10.76 10.88 4.15 ? Lb?

132 15.55 15.38 15.76 11.02 10.95 11.11 4.54 ? Lb?
244 15.71 15.32 16.03 11.87 11.70 12.02 3.84 61 ± 5 Lb
255 15.75 15.48 15.94 12.01 11.92 12.06 3.74 47 ± 3 Lb
419 16.48 16.26 16.77 12.39 12.36 12.71 4.10 ? ?

In Figure 3, the symbiotic star, NSV 11749 (ID #417), shows a gradual increase in V
and I over the course of the BG observations, and a gentle decline in V RI during the P5
interval. The scatter in the BG V data is mostly observational, as the star was quite faint
relative to the background sky. However, the slight variability seen in the P5 data seems
to be correlated between V RI, so is probably real, with a time scale of roughly 40 days.
The star showed no evidence of short-term variability (σ < 0.015 mag) over the three
nights of high-cadence I-band observing from BG. Flickering due to variable accretion
rates cannot be ruled out completely, however, since the cool red giant may dominate
any flux variations due to accretion onto the hot companion. We intend to obtain high
cadence observations in UBV to seek evidence for a variable accretion rate.

These limits on variability over the 1-5 hour time scale support the claim of BK12 that
NSV 11749 is a rare symbiotic star, rather than a more common cataclysmic variable.
Brightness modulations due to orbital effects should be evident if the star were a CV, which
typically have orbital periods of hours (e.g., Warner 1995). Also, the lack of outbursts
over the 184 days of observation is unusual for typical dwarf nova systems (Sterken &
Jaschek 1996).

The slow variation seen in Fig. 3 is consistent with the behavior of symbiotic stars (Z
Andromedae type; Sterken & Jaschek, 1996), in which the hot spot or accretion disk con-
tributes the H and He emission lines seen in Fig. 1, while our I photometry is dominated
by the light of a red giant companion. The orbital periods of SSs are typically hundreds to
thousands of days, with the very rare subclass of symbiotic novae having periods greater
than 800 days (Mikolajewska 2010). It is not clear from the small fraction of a light cycle
seen in our photometry whether the behavior is sinusoidal, and indicative of the orbital
period of an tidally-distorted red giant, or asymmetric and indicative of Mira-type pul-
sations seen in the secondaries of many symbiotic novae (Mikolajewska 2010). However,
the colors and spectral type of NSV 11749 indicate a star hotter than the Mira variable
#27, so as we gather more data in the coming years, we anticipate seeing an elliptical
light curve with a period of ∼3 years.

Figure 4 shows the light curves of star #1. Despite being the brightest star in the
field and saturated on some images, the star is clearly variable with a low amplitude
(∆V ∼ 0.3) mag and irregular cycle (40-50 days between peaks). The All Sky Automated
Survey (ASAS; Pojmański & Maciejewski 2005) also detected this star, labeled ASAS
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190744+0007.1, as variable with a mean V of 11.41 mag and a V amplitude of 0.35 mag.
The period given by ASAS is 57.9 days, but they were unable to ascribe a variable type
to the star; it is listed as “MISC.” A time-magnitude plot of the ASAS data shows no
regular periodicity, and the time and amplitude scales of the variability come in and out
of coherence over months to years. Our photometry is consistent with the behavior seen
in the ASAS photometry. Given the irregular behavior seen in both data sets, the lack
of variation over hours, and the extremely red color of the star, we believe this star is a
low-amplitude irregular pulsating giant star, type “Lb” in the GCVS notation (Samus et

al. 2012).

Figure 3. Light and color curves for NSV 11749
(ID#417) where the V and R data (© and
△) have been shifted upward by 2.0 and 1.0
mag, respectively, for ease of display. The solid
squares and line (VC) show photometry of the
non-variable star #127 for comparison. The ar-
row indicates the transition from BG to P5 data.

Figure 4. Light curves for stars #1, #26 and
#27. Symbols are as in Fig. 3. Error bars in
Figs. 3-6 are described in the text.

The light curves for star #26, shown in Fig. 4, indicate a more consistent periodicity
of 73± 2 days over 2.5 light cycles, while the amplitude varies considerably from cycle to
cycle. These and the star’s red color suggest this star is a semi-regular (SR) long period
variable. Our continuing observations will determine the level of periodicity and hence
the sub-category SRa versus SRb.

The classification of star #27, also shown in Fig. 4, is clearer: it must be a Mira (M)
type long period variable with a period longer than 200 days and an amplitude ∆V > 2.2
mag. Continuing observations will refine these values. This very red star is 7.5 arcsec
from the cataloged position of IRAS 19050+0001 and is almost certainly a match.

Star #62, shown in Fig. 5, has a regular periodicity superimposed on a linear decline
over the 184 day observing interval. After fitting and removing the linear trend, we
obtained a period of 58±3 days. This could be interpreted as an SRa long period variable
with a long secondary period (e.g., Kiss et al. 1999), or a contact binary (EW type) in
which both components are giants and one has slow, low-level pulsation. Template fitting
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Figure 5. Light curves for stars #62, #244 and
#255. Symbols are as in Fig. 3.

Figure 6. Light curves for the three stars viewed
only from BG: #85, #132 and #419. Symbols are
as in Fig. 3.

using the 58 day period resulted in a best fit using a sine curve template with an amplitude
of 0.31 mag in V and 0.14 mag in I, while a 116 day period yielded an EW template with
amplitudes of 0.34 and 0.14 mag, respectively. The rms scatter around the templates
was comparable, giving us no reason to prefer one fit over the other. More photometric
observations may clarify these two interpretations.

Stars #244 and #255 have similarly red colors and irregular light curves in terms of
both period and amplitude (see Fig. 5). We classify them both as irregular long period
variables of class Lb, with periods around 61 ± 5 days and 47 ± 3 days, respectively.

Stars #85, #132, and #419 were outside the P5 field of view, so we have only the
57 day time series obtained at BG to interpret their light curves (see Fig. 6). All three
stars have V − I ≈ 4 mag, and stars #85 and #132 have low amplitude variations. We
tentatively classify these two stars as irregular long period variables of class Lb. Star
#419 brightens and fades in V during our observations, while it remains bright in I. This
deviation might indicate an epoch of dust formation, perhaps at maximum light of a Mira
with a period much longer than 57 days. Longer time series data for all three of these
stars is needed to clarify their behavior.

We note the similarities in the light curves of stars #1, 26, 62, 244, and 255. We
reviewed our analysis and found no errors that could account for this behavior. Stars of
similar brightness, color, and location (#417, 27, and a host of non-variable stars) behave
differently, indicating that it cannot be due to systematic properties of the sky or CCD.
These light curve similarities must be coincidental, and we expect to see them fall out of
sync in future photometry.

In conclusion, we obtained six months of time series photometry on the emission line
object NSV 11749 and confirmed its slow photometric variability, consistent with the
determination of BK12 that this object is a symbiotic nova. We are continuing to monitor
this field in BV RI in order to find the orbital period of the binary. In the process of
observing NSV 11749, we confirmed the variability of one known variable, and we detected
eight new variable stars in the surrounding field. We classify the known variable, ASAS
190744+0007.1, as an irregular long period variable (Lb) and suspect the new variables
are all red, long period variables (L). Our continuing observations of these stars will refine
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their periods and sub-categories within the L type.
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