REVISED [Fe/H] AND RADIAL VELOCITIES FOR 28 DISTANT RR LYRAE STARS

PIER, J. R. ${ }^{1} ;$ SAHA, A. ${ }^{2}$; KINMAN, T. D. ${ }^{2}$
${ }^{1}$ U.S. Naval Observatory, Flagstaff Station, P.O. Box 1149, Flagstaff, Arizona 86002-1129, USA.
${ }^{2} \mathrm{NOAO}^{\dagger}$, P.O.Box 26732, Tucson, Arizona 85726, USA; email: kinman@noao.edu

We discuss 20 RR Lyrae stars found in the Anticenter fields of the Lick Survey (Kinman, Mahaffey and Wirtanen (1982) (KMW) and 8 RR Lyrae variables discovered by Saha (1984). Butler, Kemper, Kraft and Suntzeff (1982)(BKKS) have given abundances for the Lick Survey stars; Saha and Oke (1984)(SO) gave both abundances and radial velocities for 7 of the 8 Saha stars discussed here. We give both abundances and radial velocities for all these stars with improved accuracy and on a common system. Our spectra were obtained in 1983 with the intensified image dissector scanner (IIDS) attached to the Gold spectrograph on the KPNO 2.1-m telescope. For calibration we observed 18 brighter RR Lyrae stars for which Suntzeff, Kinman \& Kraft (1991) (SKK) have given the Preston $\Delta \mathrm{S}$ (Preston, 1959) and $[\mathrm{Fe} / \mathrm{H}]$ on the Zinn-West system. The phases (ϕ) for the program stars were computed using the ephemerides of KMW and Saha (1984). The ephemerides for the brighter RR Lyrae stars were taken from the GCVS (http://www.sai.msu.su/groups/cluster/gcvs) and supplemented by those given in the Hipparcos Catalogue (Vol. 11) (1997) and by ephemerides derived from unpublished photometry by Kinman.

The abundances were determined by measuring the equivalent widths of the Ca II Kline, and the Balmer lines H_{γ} and H_{δ}. The Preston index $\Delta \mathrm{S}$ was determined from these equivalent widths on a plot of the K -line equivalent width against the mean of the Balmer equivalent widths on which a grid of $\Delta \mathrm{S}$ curves was superposed (see SO, Fig. 3). The grid was calibrated by using the 18 RR Lyrae stars whose $\Delta \mathrm{S}$ is known from SKK. The $\Delta \mathrm{S}$ for the program stars were then converted to $[\mathrm{Fe} / \mathrm{H}]$ using the formula given by SKK (Eqn. 3). This formalism strictly applies only to the type $a b$ RR Lyrae stars. We also applied it to the type c variables because our single calibrating star of type c (T Sex) showed no difference from those of type $a b$ on the calibrating plot. The results are given in Table 1. The mean $\Delta \mathrm{S}$ quoted from BKKS omits the spectra which they took on the rising branch; the number of their spectra (N) in col. (6) are only those in the range $0.00 \leq \phi \leq 0.85$. $[\mathrm{Fe} / \mathrm{H}]$ was derived from their $\Delta \mathrm{S}$ using the conversion of SKK. In the case of our data, we only derived $\Delta \mathrm{S}$ from spectra whose ϕ was in the range 0.40 to 0.85 (i.e. near minimum) and (unlike BKKS) no phase correction was applied to our $\Delta \mathrm{S}$. The quality of our spectra and those of BKKH is similar, so our adopted $[\mathrm{Fe} / \mathrm{H}]$ is the mean of our new $[\mathrm{Fe} / \mathrm{H}]$ and those from BKKH data weighted by N the number of spectra. We adopted the $[\mathrm{Fe} / \mathrm{H}]$ from our new data alone for the remaining stars.

[^0]Table 1. Abundances of the RR Lyrae Variables.

Identification			$\begin{gathered} \text { RR } \\ \text { Type } \end{gathered}$$(4)$	Previous Data			New Data			Adopted [Fe/H] (11)
GCVS ${ }^{1}$	KMW^{2}	Saha ${ }^{3}$			N	[Fe/H]	$\Delta \mathrm{S}^{4}$	N	[Fe/H]	
				Source		Source				
(1)	(2)	(3)		(5)	(6)	(7)	(8)	(9)	(10)	
LV And	01		ab	6.8(a)	3	-1.48(c)	7.7	3	-1.62	-1.55
MP And	12	\ldots	ab	6.8(a)	2	-1.48(c)	8.0	2	-1.67	-1.57
MR And	14	\ldots	c	5.6(a)	3	-1.29(c)	5.2	2	-1.23	-1.26
MU And	18		ab	$7.2(\mathrm{aA})$	4	-1.55(c)	7.7	2	-1.62	-1.57
MV And	20		ab	8.2 (a)	3	-1.70(c)	9.3	3	-1.88	-1.78
DU And	21	\ldots	ab	11.0(aA)	2	-2.15(c)	10.6	2	-2.08	-2.11
MX And	23		ab	7.6(aA)	2	-1.61(c)	6.4	2	-1.42	-1.50
MY And	24		ab	$5.2(\mathrm{a})$	3	-1.23(c)	6.7	2	-1.47	-1.32
VX Lyn	34	II v104	ab	7.4(a)	2	-1.58(c)	(8.0)	0	...	-1.58
VY Lyn	35	...	c	7.8(a)	3	-1.64(c)	6.0	1	-1.36	-1.57
VZ Lyn	36	\ldots	c	6.8(a)	1	-1.48(c)	6.9	1	-1.50	-1.48
WX Lyn	38	II v208	ab	9.6:(a)	1	-1.92:(c)	7.0	1	-1.51	-1.72
YY Lyn	44		c	9.6(a)	1	-1.92(c)	9.0	1	-1.83	-1.87
ZZ Lyn	46	III v201	ab	6.4(a)	2	-1.42(c)	(5.8)	0	...	-1.42
RW Lyn	48	...	ab	7.1(a)	3	-1.53(c)	(7.4)	0	. \cdot	-1.53
AC Lyn	50	III v204	ab	$6.2(\mathrm{aA})$	2	-1.39(c)	7.8	2	-1.64	-1.50
AD Lyn	52	\ldots	c	6.6(a)	1	-1.45(c)	6.7	1	-1.47	-1.46
AF Lyn	55	\ldots	ab	7.0(a)	3	-1.51(c)	8.3	1	-1.72	-1.56
AK Lyn	60	\ldots	ab	$7.8(\mathrm{aA})$	1	-1.64(c)	6.9		-1.50	-1.56
AL Lyn	61	...	ab	$9.9(\mathrm{aA})$	1	-1.97(c)	9.0	1	-1.83	-1.90
KO Peg	...	IV v103	ab	9.4(b)	1	-1.7 (b)	10.9	1	-2.13	-2.13
KM Peg	\ldots	IV v104	ab	7.7(b)	1	-1.5 (b)	6.0	1	-1.36	-1.35
KL Peg	\ldots	IV v106	ab	4.9(b)	1	-1.0 (b)	6.1	1	-1.37	-1.36
KN Peg	\ldots	IV v107	ab	7.7(b)	1	-1.5 (b)	7.5	,	-1.59	-1.59
NO And		IV v108	c	...	\ldots	...	8.0	1	-1.67	-1.67
NN And	\ldots	IV v201	ab	8.8(b)	1	-1.6 (b)	6.0	2	-1.36	-1.35
NQ And		IV v301	ab	8.6(b)	1	-1.6 (b)	6.2	1	-1.39	-1.38
IQ Peg	\ldots	IV v401	ab	6.9(b)	1	-1.3 (b)	7.0	1	-1.51	-1.51

${ }^{1}$ GCVS (http://www.sai.msu.su/groups/cluster/gcvs)
Kinman, Mahaffey and Wirtanen (1982) (KMW)
Saha (1984)
${ }^{4}$ Parentheses indicate $\Delta \mathrm{S}$ derived from observations not at minimum light
Sources of Data:
(a) Butler, et al. (1982) (BKKS); (aA) adjusted from BKKS (see text)
(b) Saha and Oke (1984)
(c) Derived from $\Delta \mathrm{S}$ using equation (3) in Suntzeff et al. (1991) (SKK)

The mean difference between the adjusted mean values of $\Delta \mathrm{S}$ from BKKS and our new values is $+0.03 \pm 0.03$. The corresponding difference between the estimates of $[\mathrm{Fe} / \mathrm{H}]$ is -0.00 ± 0.05.

Radial velocities were determined from the IIDS spectra by a Fourier method (Pier, 1983) in which the program spectra are cross correlated with that of a star of known velocity; the velocity in this case is defined by both the Balmer and weak metal lines. The velocity was also derived from the three strong lines ($\mathrm{H}_{\gamma}, \mathrm{H}_{\delta}$ and the Ca II K-line) and weights of 2,1 and 0 were given if the $\sigma_{r m s}$ of a single line was $<40 \mathrm{~km} \mathrm{~s}^{-1}$, between 40 and $70 \mathrm{~km} \mathrm{~s}^{-1}$ or $>70 \mathrm{~km} \mathrm{~s}^{-1}$ respectively.

The γ-velocity was derived for type $a b$ stars using the recipe given by Liu (1991). For type c stars, we scaled the velocity curve of T Sex by the relative V-amplitudes and got

Table 2. Radial Velocities of the RR Lyrae Variables.

Variable	RRType (2)	Saha \& Oke (1984)		IIDS Spectra				Adopted Rad. Vel. $\mathrm{km} \mathrm{s}^{-1}$ (9)
		Rad. Vel.	N^{1}	Rad. Vel. ${ }^{2}$	Wt ${ }^{3}$	Rad.Vel. ${ }^{4}$	Wt ${ }^{3}$	
		$\mathrm{km} \mathrm{s}^{-1}$		$\mathrm{km} \mathrm{s}^{-1}$		$\mathrm{km} \mathrm{s}^{-1}$		
(1)		(3)	(4)	(5)	(6)	(7)	(8)	
LV And	ab	...		-028.1	8	-038.4	4	-031.5
MP And	ab	\ldots	\ldots	-102.6	4	-104.1	4	-103.4
MR And	c	\ldots	\ldots	-081.7	4	-079.6	4	-080.6
MU And	ab	\ldots	\ldots	-099.6	4	-091.7	4	-095.6
MV And	ab	\ldots	\ldots	-066.1	8	-068.2	8	-067.2
DU And	ab	\ldots	\ldots	-343.0	4	-362.3	3	-351.3
MX And	ab	\ldots	\ldots	-187.8	2	-187.8
MY And	ab	. \cdot	\ldots	-138.8	4	-130.3	4	-134.6
VX Lyn	ab	$+48 \pm 23$	1	-024.9	4	+027.5	4	+001.3
VY Lyn	c	...	\ldots	+103.9	2	+125.1	2	+114.5
VZ Lyn	c	\cdots	\ldots	-167.4	2	-196.8	2	-182.1
WX Lyn	ab	$+2 \pm 20$	2	+020.2	4	+034.4	3	+026.3
YY And	c			-082.3	4	-103.9	4	-093.1
ZZ Lyn	ab	$+255 \pm 54$	1	+157.0	2	+137.5	2	+147.2
RW Lyn	ab			-140.7	4	-158.9	4	-149.8
AC Lyn	ab	\ldots	\ldots	-022.5	4	-029.0	4	-025.8
AD Lyn	c	\ldots	\ldots	+124.0	2	+123.2	2	+123.6
AF Lyn	ab	\ldots	\ldots	-108.0	2	-149.0	1	-121.7
AK Lyn	ab	\ldots	\ldots	+234.8	2	+243.1	1	-237.6
AL Lyn	ab			-058.0	4	-073.6	4	-065.8
KO Peg	ab	-272 ± 25	1	-342.9	2	-331.1	2	-335.0
KM Peg	ab	-164 ± 25	1	-230.1	2	-235.7	2	-233.8
KL Peg	ab	-342 ± 35	1	-393.8	2	-376.9	2	-382.5
KN Peg	ab	-74 ± 36	1	-194.9	2	-199.4	1	-196.4
NO And	c	...	\ldots	-079.7	2	-064.2	1	-074.5
NN And	ab	-276 ± 24	1	-293.5	4	-305.0	3	-298.4
NQ And	ab	-235 ± 29	1	-247.7	2	-240.5	2	-242.9
IQ Peg	ab	-207 ± 34	1	-203.5	2	-203.9	2	-20-3.7

Notes:
${ }^{1}$ No. of spectra ${ }^{3}$ Weight as described in text
2 Derived by Fourier method. ${ }^{4}$ Derived from $\mathrm{H}_{\gamma}, \mathrm{H}_{\delta}$ and the Ca II K-line.
a correction from that. For the type $a b$ variable SU Dra, the velocity amplitude of H_{γ} is about $100 \mathrm{~km} \mathrm{~s}^{-1}$ compared with $60 \mathrm{~km} \mathrm{~s}^{-1}$ for the weaker metal lines (Oke, Giver \& Searle, 1962). The use of the Liu-correction could therefore produce systematic effects in the difference (D) between the velocity based on the strong lines and that based on the weaker lines: D should be positive just before phase zero and negative just after. We did not observe this and conclude that the effect is too small to affect our results. The mean difference $\langle\mathrm{D}\rangle$ is $-3.7 \pm 4.9 \mathrm{~km} \mathrm{~s}^{-1}$ so there is no systematic difference between the two methods. The rms value of D for each star is $21 \mathrm{~km} \mathrm{~s}^{-1}$; on average therefore, these adopted velocities have an error of about $\pm 15 \mathrm{~km} \mathrm{~s}^{-1}$.

In Table 3 we give the most recent coordinates for these variables. These have been taken from the USNO-B1.0 Catalog (Monet et al., 2003) and checked against the original finding charts using the Digital Sky Survey (http://cadcwww.dao.nrc.ca/dss/).

Table 3. Coordinates of the RR Lyrae Variables.

Variable	$\begin{gathered} \langle\mathrm{V}\rangle \\ \text { (mag.) } \end{gathered}$	J2000		Variable	$\begin{gathered} \langle\mathrm{V}\rangle \\ (\mathrm{mag} .) \end{gathered}$	J2000	
		R.A.	Dec.			R.A.	Dec.
LV And	15.44	021926.39	+414557	RW Lyn	12.91	075039.18	+382715
MP And	16.13	022413.74	+411947	AC Lyn	16.38	075442.16	+385421
MR And	15.56	022527.81	$+405726$	AD Lyn	15.85	075622.99	+39 2259
MU And	16.00	022926.44	+393145	AF Lyn	16.12	083557.43	+410111
MV And	15.99	023012.29	+405315	AK Lyn	16.00	084555.10	+391455
DU And	13.59	023031.33	+405034	AL Lyn	16.52	084913.07	+384931
MX And	17.18	023203.09	+420831	KO Peg	16.03	000215.33	+30 0437
MY And	15.56	023209.47	+430447	KM Peg	17.67	235545.11	+29 0952
VX Lyn	17.01	073151.83	+39 0748	KL Peg	16.85	234657.08	+295102
VY Lyn ${ }^{1}$	15.75	073226.04	$+385007$	KN Peg	17.44	235646.56	+314023
VZ Lyn	16.20	073240.75	+413739	NO And	16.54	000658.32	+320207
WX Lyn	16.84	073538.47	+391527	NN And	16.68	000655.84	+312813
YY Lyn	14.98	074530.07	+372259	NQ And	16.31	001132.68	+305141
ZZ Lyn	15.80	075021.77	+374200	IQ Peg	16.11	000605.68	+291913

Notes:
1 The catalog lists two stars of similar brightness close to this position. The DSS only shows one star.

References:

Butler, D., Kemper, E., Kraft, R. P., and Suntzeff, N. B., 1982, AJ, 87, 353 (BKKS)
ESA (1997), The Hipparcos \& Tycho Catalogues (Vol. 11), (ESA SP-1200) (Noordwijk: ESA)
Kinman, T. D., Mahaffey, C. T. and Wirtanen, C. A. 1982, AJ, 87, 314 (KMW)
Liu, T. 1991, PASP, 103, 205
Monet, D. G., Levine, S. E., Casian, B. et al. 2003, $A J, 125,984$
Oke, J. B., Giver, L. P., and Searle, L. 1962, ApJ, 136, 393
Pier, J. R. 1983, ApJS, 53, 791
Preston, G. W., 1959, ApJ, 130, 507
Saha, A. 1984, ApJ, 283, 580
Saha, A. and Oke, J. B. 1984, ApJ, 285, 688 (SO)
Suntzeff, N. B., Kinman, T. D., Kraft, R. P. 1991, ApJ, 367, 528, (SKK)

[^0]: ${ }^{\dagger}$ The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation

