Konkoly Observatory
Budapest
6 November 2001
HU ISSN 0374-0676

THE HISTORICAL, 1889-2002, LIGHT CURVE OF THE ECLIPSING SYMBIOTIC BINARY AR Pav

SKOPAL, A. ${ }^{1,2}$; KOHOUTEK, L. ${ }^{3}$; JONES, A. ${ }^{4}$; DRECHSEL, H. ${ }^{2}$
${ }^{1}$ Astronomical Institute, SK-05960 Tatranská Lomnica, Slovakia, e-mail: skopal@ta3.sk
${ }^{2}$ Astronomical Institute, University of Erlangen-Nürnberg, Sternwartstr. 7, D-96049 Bamberg, Germany
${ }^{3}$ Hamburg Observatory, Gojenbergsweg 112, D-21029, Hamburg, Germany
${ }^{4}$ Carter Observatory, PO Box 2909, Wellington 1, New Zealand

AR Pavonis is an eclipsing symbiotic binary with an orbital period of 605 days (Mayall 1937). It consists of a M5 III giant (Mürset \& Schmid 1999) with a mass of $\sim 2 M_{\odot}$ (Schild et al. 2001). The nature of the hot companion is under discussion. The presence of a large accretion disk around a main sequence star was suggested by Kenyon \& Webbink (1984) and Skopal et al. (2000a), but, in contrast, Schild et al. (2001) considered a possibility that the hot component is a white dwarf and the red giant underfills its Roche lobe. According to the observed variations in the UV/optical continuum (e.g. Schild et al. 2001, Skopal et al. 2000a), the hot eclipsed object is highly variable in brightness, size and geometry. Photometric activity of AR Pav has been recorded since 1889 (Mayall 1937). The top panel of Fig. 1 shows its historical 1889.5-2001.8 photographic/ B-band/visual light curve (LC). The m_{pg} / B-band LC is characterized by about 2 mag deep minima - eclipses - and strong out-of-eclipse variations between about 12 and 10 mag , which peaked at $\sim 9^{m}$ in 1900 and 1935 active phases. The visual LC documents the evolution since 1982.2. It completely covers the 1985-1999 active phase. Dramatic out-of-eclipse variations in this part of the LC were interpreted as a result of variable mass transfer from the red giant (Bruch et al. 1994) and/or by an impact of the ejected material from the hot star to the facing red giant hemisphere (Skopal et al. 2000a).

Our new photographic magnitudes were obtained by measuring a total of 137 plates collected in the archive of the Bamberg Observatory. They cover the period 1963.5 to 1971.5. The magnitudes were estimated by eye at a microscope using the photoelectric sequence provided by Kilkenny (1988). For each plate we made a few independent estimates. It was possible to achieve an accuracy of about 0.1 mag . The data are summarized in Table 1 and plotted in Fig. 1. Compared are photoelectric B magnitudes of Andrews (1974), which confirm the high accuracy of our photographic estimates. This suggests that variations of $\geq 0.1 \mathrm{mag}$ can be considered as real. Our data indicate rather irregular brightness changes from cycle to cycle with an increasing trend from epoch $\mathrm{E}=45$ to $\mathrm{E}=48$ (Fig. 2, left panel). We believe that a variable mass transfer governs this kind of irregular changes. In addition, a flat maximum can be recognized between 1969 and 1971 (Fig. 1, mid). This might be of the same nature as those observed in the Mayall's LC, suggesting a periodicity of 7-10 years (cf. Fig. 1, top).

Figure 1. The historical 1889.5-2001.8 photographic/ B-band/visual LC of AR Pav. It is compiled from photographic data of Mayall (1937), those presented in this paper, B-band photoelectric measurements as published by Andrews (1974) and Menzies et al. (1982), and the visual estimates made by one of us (AJ). Middle: A part of the LC between 1963.5 and 1973.7 composed of our photographic magnitudes and B-band photoelectric measurements by Andrews (1974). Note the very good agreement between these data sets. Bottom: Our visual estimates, which document the photometric evolution from 1982.2 to date. Compared are y-band photoelectric measurements obtained during the LTPV program at ESO (Manfroid et al. 1991, Sterken et al. 1993) and V-band photometry (around JD 2 451410) published by Skopal et al. (2000b). Also in this case, agreement between these data sets is excellent. Epochs E are given according to the average linear ephemeris of the minima, Min $=J D 2411265.9+604.46 \times \mathrm{E}$ (Skopal et al. 2000a).

Our new visual estimates cover the period from epoch 66 (1998.9, cf. Fig. 1). They were carried out by one of us (AJ) with a private $12^{\prime \prime} .5 \mathrm{f} / 5$ reflector using the comparison sequence of Kilkenny (1989). They are shown in the bottom panel of Fig. 1. Comparison of the photoelectric y and V magnitudes testifies the high quality of the visual observations. Our data show that the active phase of AR Pav suddenly ended at the beginning of epoch 66. No brightening was observed from this epoch to date. To demonstrate basic changes of the hot object between activity and the present quiescence, we folded the data according to the average ephemeris of the minima (Skopal et al. 2000a) and, as an example, selected those at $\mathrm{E}=62$ and $\mathrm{E}=66$ (Fig. 2, right panel). The $\mathrm{E}=66$ minimum is narrower by about 16 days, deeper by $\approx 0.5 \mathrm{mag}$ with approximately the same level of minimum light, and shifted by about -1.4 days with respect to the minimum at $\mathrm{E}=62$. In addition, a sharp profile of the recent minima at $\mathrm{E}=66$ and 67 with a stillstand at $\varphi \sim 0.96$ is very similar to that observed during the quiescent phase between the epoch 0 and 28 (cf. Fig. 8 of Skopal et al. 2000a). Finally, we determined positions of the recent two minima to $\operatorname{Min}(66)=$ JD2 451158.9 ± 0.7 and $\operatorname{Min}(67)=$ JD2 451762.8 ± 0.7. Combining these positions with those published by Skopal et al. (2000a) allows us to slightly refine the average linear ephemeris of all available mid-points of eclipses between $\mathrm{E}=4$ and 67 to

$$
\text { Min }=J D 2411266.1+604.45(\pm 0.02) \times E
$$

The mid points of the last two minima suggest a period of 603.9 ± 0.5 days, which is consistent with the real period change derived by Skopal et al. (2000a). However, observations of further minima are needed to reduce the uncertainty.

Acknowledgements: This research was supported by the Alexander von Humboldt foundation (project SLA/1039115) and the Slovak Academy of Sciences Grant No. 2/5117/01. AS acknowledges the hospitality of the Astronomisches Institut der Universität ErlangenNürnberg in Bamberg. LK thanks the directorate of this institute for the possibility and for the support in his investigating the plates of the archive.

Figure 2. Phase diagrams of our photographic magnitudes (left) and visual estimates at $\mathrm{E}=62,66$ (right).

Table 1: New photographic magnitudes of AR Pav.

JD 24...	$m_{\text {pg }}$	JD 24...	m_{pg}	JD 24...	$m_{\text {pg }}$	JD 24...	m_{pg}
38228.366	11.36	38589.341	12.10	39236.440	11.42	40027.028	11.65
38229.363	11.45	38590.340	12.26	39269.497	11.58	40028.042	11.43
38230.364	11.40	38592.337	12.28	39289.447	11.78	40056.958	11.37
38233.310	11.42	38606.317	12.30	39291.434	11.79	40063.913	11.39
38234.360	11.40	38607.299	12.16	39293.431	11.79	40328.188	11.74
38235.326	11.38	38608.298	12.13	39299.431	11.83	40337.205	11.34
38236.319	11.43	38613.299	12.09	39300.410	11.82	40338.172	11.39
38252.269	11.38	38614.301	12.12	39301.419	11.83	40340.180	11.34
38254.274	11.49	38615.301	12.20	39318.358	11.83	40357.149	11.28
38257.267	11.45	38618.306	12.23	39343.309	11.61	40366.119	11.11
38258.267	11.46	38620.271	12.10	39346.267	11.47	40382.065	10.81
38260.270	11.46	38621.292	12.12	39357.254	11.38	40394.011	10.57
38261.269	11.41	38622.270	12.12	39358.237	11.51	40395.021	10.73
38264.225	11.41	38636.219	12.23	39372.236	11.28	40410.005	10.73
38265.223	11.58	38640.219	12.19	39614.547	11.59	40412.983	10.73
38266.269	11.43	38641.222	11.89	39654.042	12.90	40415.955	10.67
38267.221	11.48	38643.222	11.89	39656.042	13.28	40439.913	10.99
38268.226	11.80	38884.547	10.92	39657.028	13.02	40440.916	10.90
38277.224	11.44	38917.454	11.22	39669.994	13.25	40449.881	10.90
38504.572	12.12	38933.399	11.20	39671.014	13.56	40711.194	10.55
38505.574	12.46	38934.396	11.42	39672.021	13.47	40721.113	10.48
38528.513	11.92	38935.406	11.17	39677.969	13.59	40722.124	10.49
38529.514	12.01	38939.399	11.14	39680.979	13.51	40736.073	10.58
38553.462	12.05	38940.404	11.23	39682.990	13.42	40737.054	10.60
38555.461	12.15	38942.399	11.25	39683.999	13.68	40746.057	10.57
38556.463	12.08	38943.379	11.27	39684.958	13.69	40747.023	10.80
38557.463	11.82	38965.338	11.33	39702.938	12.94	40748.063	10.53
38560.419	11.87	38966.309	11.39	39708.896	12.35	40762.999	10.68
38562.423	12.10	38971.316	11.49	39709.886	12.35	40764.039	10.81
38578.377	12.02	38972.330	11.47	39710.896	12.24	40822.828	11.02
38580.383	12.10	38992.267	11.45	39972.198	11.78	41066.194	10.86
38583.381	12.06	38994.229	11.49	39976.177	11.82	41120.024	10.93
38584.381	12.10	38995.229	11.50	40000.090	11.85	41122.038	10.74
38585.381	12.06	39187.576	11.27	40010.063	11.85	41123.035	10.93
						41147.917	10.81

References:

Andrews, P. J.; 1974, MNRAS, 167, 635
Bruch, A.; Niehues, M.; Jones, A. F.; 1994, A\&̇A, 287, 829
Kenyon, S. J.; Webbink, R. F.; 1984, ApJ, 279, 252
Kilkenny, D.; 1988, R. Astron. Soc. of New Zealand, VSS, No. 15, 35
Manfroid, J.; et al., 1991, $A \xi A S, 87,481$
Mayall, M. W.; 1937, Harvard Ann., 105, 491
Menzies, J. W.; Coulson, I. M.; Caldwell, J. R. A.; Corben, P. M.; 1982, MNRAS, 200, 463
Mürset, U.; Schmid, H. M.; 1999, $A \xi A S, 137,473$
Schild, et al., 2001, $A \xi A, \mathbf{3 6 6}, 972$
Skopal, A.; et al., 2000a, MNRAS, 311, 225
Skopal, A.; et al., 2000b, Contrib. Astron. Obs. Skalnaté Pleso, $\mathbf{3 0}$
Sterken, C.; et al., 1993, $A \mathcal{\xi} A S, \mathbf{1 0 2}, 79$

