GSC 5002-0629: A NEW BRIGHT DOUBLE-MODE RR LYRAE VARIABLE

GARCIA-MELENDO, E. ${ }^{1}$; HENDEN, ARNE A. ${ }^{2}$; GOMEZ-FORRELLAD, J. M. ${ }^{1,3}$

${ }^{1}$ Esteve Duran Observatory Foundation, Montseny 46 - Urb. El Montanya, 08553 Seva, Spain, e-mail: duranobs@astrogea.org
${ }^{2}$ USRA/USNO, P.O. Box 1149, Flagstaff, AZ 86002-1149, USA, e-mail: aah@nofs.navy.mil
${ }^{3}$ Grup d'Estudis Astronomics, Apartado 9481, 08080 Barcelona, Spain, e-mail: jmgomez@astrogea.org

The variability of GSC 5002-0629 was first announced by Henden and Stone (1998) who found it in the Sloan digital survey calibration fields. This star also received the denomination of FASTT1 0687 in the list of new Sloan variables. In a collaborative work between the US Naval Observatory Flagstaff Station, the Esteve Duran Observatory Foundation, and the Grup d'Estudis Astronomics, GSC 5002-0629 was included in a list of selected bright FASTT1 variable stars to confirm their variable nature and, if possible, characterise them.

Once the variability of this star was confirmed from Mollet Observatory and a tentative variable type assigned, GSC 5002-0629 was intensively observed for 35 nights, from 1 April 1997 to 22 January 1998 with the $0.6-\mathrm{m}$ Cassegrain telescope at Esteve Duran Observatory in the V band, and the 1-m Ritchey-Chrétien telescope at the US Naval Observatory Flagstaff Station in the B, V, R_{c}, and I_{c} bands. A total of 1508 photometric datapoints were collected. Several stars in the field of GSC 5002-0629 were placed in the standard system by using Landolt (1992) standards. GSC 5002-0506 was used as primary comparison and GSC 5002-0636 as check star, but the latter could not be included in the CCD frames taken with the 1-m telescope and therefore this object could not be standardised. Table 1 lists the standard V magnitudes and color indices of comparison stars near the variable whereas Figure 1 shows the field of GSC 5002-0629.

Table 1

Star	GSC	V	$B-V$	$V-R$	$R-I$
A	$5002-0506$	11.503 ± 0.014	0.537 ± 0.006	0.336 ± 0.006	0.329 ± 0.005
B	$5002-0525$	13.528 ± 0.019	0.655 ± 0.015	0.390 ± 0.014	0.381 ± 0.015
C	$5002-0566$	12.936 ± 0.015	0.545 ± 0.011	0.339 ± 0.014	0.344 ± 0.012
D	$5002-0650$	13.550 ± 0.016	0.923 ± 0.012	0.543 ± 0.012	0.515 ± 0.014

Observations show that GSC 5002-0629 is a new field double-mode RR Lyr variable star. To date this is the seventh known RRd pulsator in the Milky Way field (Jerzykiewicz and Wenzel 1977; Clement et al. 1991; Garcia-Melendo and Clement 1997; Moskalik 2000; Clementini et al. 2000). GSC 5002-0629 is also particularly interesting because,

Figure 1. Field of GSC 5002-0629. See Table 1 to identify stars. V = GSC 5002-0629. Image retrieved using Aladin Previewer at Centre de Données astronomiques de Strasbourg, from the Science and Engineering Research Council at the Space Telescope Science Institute. North is on top

Figure 2. Position of GSC 5002-0629 on the Petersen diagram with pulsation models for $0.85,0.75$, and 0.65 solar masses adapted from Clementini et al. (2000). The other represented Milky Way field RRd stars are AQ Leo (Jerzykiewicz et al. 1982), VIII-10, VIII-58 (Clement et al. 1993), V2493 Oph (Garcia-Melendo and Clement 1997), and CU Com (Clementini et al. 2000)

Figure 3. Light curve of GSC 5002-0629 folded according to P_{1}. The arbitrary HJD 2450548.664 date was taken as origin
with an average V magnitude of 11.32 , it is the brightest of all known RRd variables to date. Therefore it will allow observers to obtain accurate spectroscopic data to study its metallicity. After performing a Fourier analysis following the same approach described by Garcia-Melendo and Clement (1997), it was found that this star pulsates with periods $P_{0}=0.47125$ and $P_{1}=0.35079$ with a P_{1} / P_{0} ratio of 0.7444 , a common value for doublemode RR Lyr stars. Table 2 summarizes all the relevant measured parameters for GSC 5002-0629. A Fourier decomposition of the light curve of this star also showed, as is typical among RRd pulsators, that the first overtone is the dominant mode of pulsation, in this case $A_{1}(V) / A_{0}(V)=1.4\left(A_{0}(V)\right.$ and $A_{1}(V)$ are the amplitudes in the V band associated to the P_{0} and P_{1} components respectively). The P_{0} and P_{1} / P_{0} values place this star on the theoretical low-mass side of the Petersen diagram (Figure 2). Figure 3 shows the photometric data obtained in the V band folded according to P_{1}.

Table 2: Relevant data of GSC 5002-0629

P_{1} (days)	0.35079 ± 0.00020
P_{0} (days)	0.47125 ± 0.00020
P_{1} / P_{0}	0.7444
$\langle V\rangle$	$11^{\mathrm{m}} 32$
$\langle B-V\rangle$	$0^{\mathrm{m}} 38$
$\langle V-R\rangle$	$0^{\mathrm{m}} 26$
$\langle R-I\rangle$	$0^{\mathrm{m}} 29$
$V_{\max }-V_{\min }$	$0^{\mathrm{m}} 86$
$A_{1}(V)$	$0^{\mathrm{m}} 20$
$A_{0}(V)$	$0^{\mathrm{m}} 14$

Acknowledgements. This work made use of the SIMBAD database operated by the CDS at Strasbourg, France.

References:
Clement, C. M., Kinman, T. D., Suntzeff, N. B., 1991, ApJ, 372, 273
Clement, C. M., Ferance S., Simon N., 1993, ApJ, 412, 183
Clementini, G., Di Tomaso, S., Di Fabrizio, L., Bragaglia, A., Merighi, R., Tosi, M., Carretta, E., Gratton, R. G., Ivans, I. I., Kinard, A., Marconi M., Smith, H. A., Wilhelm, R., Wooddruff, T., Sneden C., 2000, AJ, 120, 2054
Garcia-Melendo, E., Clement, C. M., 1997, AJ, 114, 1190
Henden, A. A., Stone R. C., 1998, AJ, 115, 296
Jerzykiewicz, M., Wenzel, W., 1977, AcA, 27, 35
Jerzykiewicz, M., Schult R., Wenzel, W., 1982, AcA, 32, 357
Landolt, A. U., 1992, AJ, 104, 340
Moskalik, P., 2000, in IAU Coll. No. 176, The Impact of Large-Scale Surveys on Pulsating Stars Research, ed. L. Szabados and D. Kurtz (ASP Conf. Ser. 203), San Francisco: ASP, 315

