COMMISSIONS 27 AND 42 OF THE IAU

INFORMATION BULLETIN ON VARIABLE STARS

Konkoly Observatory
Budapest
1 February 2000
HU ISSN 0374-0676

GSC 4832.400: A NEW ECLIPSING BINARY SYSTEM

MERCHÁN-BENÍTEZ, P.; JURADO-VARGAS, M.
Departamento de Física, Facultad de Ciencias, Universidad de Extremadura, Avda de Elvas s/n, 06071,
Badajoz, Spain, e-mail: pedromer@unex.es, mjv@unex.es

Name of the object:
GSC 4832.400

Equatorial coordinates:	Equinox:
R.A. $=07^{\mathrm{h}} 50^{\mathrm{m}} 45.4$ DEC. $=-00^{\circ} 00^{\prime} 100^{\prime \prime} 9$	2000.0

Observatory and telescope:

Observatorio del Departamento de Física de la Universidad de Extremadura, Re-
flector Newton $0.4-\mathrm{m} f / 4.5$

Detector:
Filter(s): Starlight Xpress CCD Camera (based in the chip SONY ICX027BL $6.4 \times 4.35 \mathrm{~mm}^{2}, 500 \times 256$ pixels) Comparison star(s): GSC 4832.2073 Check star(s): GSC 4832.912

Transformed to a standard system:	No

Availability of the data:
Upon request

Type of variability: EW

Table 1

Min HJD	Type	Epoch	$O-C$
$2451000+$			
1242.3875	Secondary	0.5	0.0008
1243.3266	Secondary	3.5	0.0005
1244.4210	Primary	7	-0.0012
1254.4450	Primary	39	0.0020
1256.3233	Primary	45	0.0014

Figure 1. The V light curve obtained for GSC 4832.400. Magnitude differences (variable minus comparison) are plotted versus phase, where the phases are computed using the ephemeris calculated in this work.

Remarks:

The result of this surveillance program showed that GSC 4832.400 is an eclipsing binary system with a period very close to 7.5 hours. Figure 1 shows the differential light curve obtained in the V band. This light curve suggests that GSC 4832.400 could be a near contact binary system. The primary minimum shows $0^{\mathrm{m}} 43$ average depth, and the secondary minimum $0{ }^{\mathrm{m}} 37$. The light curve in the V band also seems to show an O'Connell effect (O'Connell 1951), that amounts to $\Delta m=$ Max. I - Max. $\mathrm{II}=-0.035$ magnitudes, where Max. I is at phase 0.25 and Max. II at phase 0.75.
Five moments of minima (two secondaries and three primaries) were obtained from our observations according to the Kwee-Van Woerden (1956) method. The following ephemeris was derived for the minimum I:

$$
\begin{gathered}
\text { Min. } \mathrm{I}=\mathrm{HJD} 2451242.23011+0 \mathrm{~d} 31315 \times E . \\
\pm 0.00067 \pm 0.00001
\end{gathered}
$$

The times of minima are presented in Table 1. The number of cycles elapsed (E) and $O-C$ residual values are also listed, determined using the ephemeris given above.

> Acknowledgements:
> This research was supported by the Consejería de Educación y Juventud (Junta de Extremadura) and Fondo Social Europeo under project IPR98A047. Thanks are due to the GEA (Grup d'Estudis Astronomics) for its help in the stars search program.

References:

Kwee, K.K., Van Woerden, H., 1956, BAN, 12, 327

