COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4740

Konkoly Observatory Budapest 4 August 1999 *HU ISSN 0374 - 0676*

RZ CEPHEI — PERIOD VARIATION

IOAN TODORAN, RODICA ROMAN

Astronomical Observatory, Cluj-Napoca, Romania

The variability of RZ Cephei was discovered by Leavitt in 1907. This is an $RR_{\rm C}$ -type star and its observation is important for at least three reasons: (i) the period variability; (ii) a pre-maximum hump in the light curve and (iii) its high space velocity. For a more detailed historical information we recommend the article written by Cester and Todoran (1976).

Here only the period variability is concerned. In Table 1 we report a series of 25 observed maxima (7 maxima observed by Alania and Abuladze (1980, 1986) and 18 maxima observed by Todoran). The times of maxima were determined by Roman.

Even if the observations are performed with photoelectric photometers, having in view the varying shape of the light curve in the vicinity of its maximum, Pogson's method and "mean" light curve were used in order to determine the heliocentric times of maxima. The results are given in Table 1. Here the corresponding O - C differences were computed by using the linear ephemeris:

$$Max = HJD \ 2410000.38 + 0^{d}.30866671 \times E \tag{1}$$

and could be affected by the variability of the corresponding light curve.

In their study referring to the period variation, Cester and Todoran (1976) postulated a cycle of 50 years, while Todoran (1976) has written: "we can say that RZ Cephei is at least a triple periodic variable star".

Now, in order to have a general image about period variation of RZ Cephei, we have also used the observed maxima listed by Todoran (1974), Cester and Todoran (1975, 1976), Maintz (1992) and Seifert (1993).

For all the above mentioned maxima, the O - C residuals are displayed in Fig. 1, where the cyclic variation is evident, but at least a critical remark could be relevant. The amplitude of the period variation is about twice the length of the period. We consider that such a situation is determined by the fact that we have here, in the same time, two unknown parameters: the length of the period and the corresponding cycle number E.

Therefore, it is evident that RZ Cephei must be observed in the future and the period variation to be connected with the changes observed in the shape of the light curve.

Figure 1.

	\cap α					
$\begin{array}{ccc} \text{HJD } 244 & n \end{array}$	O - C	E	Observer			
3378.398 41	-0.274	108137	Alania; Abuladze			
3759.322 - 69	-0.245	109371	Alania; Abuladze			
3772.286 87	-0.245	109413	Alania; Abuladze			
3783.401 108	-0.242	109449	Alania; Abuladze			
3791.426 54	-0.242	109475	Alania; Abuladze			
4842.425 100	-0.253	112880	Todoran			
4900.436 9	-0.271	113068	Alania; Abuladze			
4901.365 59	-0.269	113071	Alania; Abuladze			
5219.276 65	-0.284	114101	Todoran			
5221.440 20	-0.281	114108	Todoran			
5266.196 - 23	-0.282	114253	Todoran			
5286.265 75	-0.275	114318	Todoran			
5299.230 70	$-0^{d}275$	114360	Todoran			
5300.152 65	-0.273	114363	Todoran			
5578.470 120	-0.070	115264	Todoran			
$5580.325 ext{ 80}$	-0.068	115270	Todoran			
5606.250 90	$-0^{ m d}_{}070$	115354	Todoran			
5609.340 90	-0.046	115364	Todoran			
5622.302 67	-0.068	115406	Todoran			
6019.290 75	-0.025	116692	Todoran			
6034.404 16	-0.036	116741	Todoran			
6284.410 30	-0.050	117551	Todoran			
6293.345 48	-0.067	117580	Todoran			
6328.194 27	-0.097	117693	Todoran			
6346.433 95	$-0^{d}069$	117752	Todoran			

Table 1: Observed maxima of RZ Cephei

References:

- Alania, J.F., Abuladze, O.P., 1980, Bull. Abastum. Astrophys. Obs., 53, 13
- Alania, J.F., Abuladze, O.P., 1986, Bull. Abastum. Astrophys. Obs., 61, 15
- Cester, B., Todoran, I., 1975, IBVS, No. 1047
- Cester, B., Todoran, I., 1976, Mem. Soc. Astron. Ital., 47(2), 217
- Maintz, G., 1992, BAVM, No. 60
- Seifert, K., 1993, BAVM, No. 62
- Todoran, I., 1974, IBVS, No. 915
- Todoran, I., 1976, Multiple Periodic Variable Stars, IAU Colloquium No. 29, ed. W.S. Fitch, Vol. 2, Akadémiai, Budapest, p. 215