COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4617

Konkoly Observatory Budapest 3 August 1998 *HU ISSN 0374 - 0676*

HD 6628: A NEW ACTIVE, SINGLE-LINED SPECTROSCOPIC BINARY

L.C. WATSON, K.R. POLLARD, J.B. HEARNSHAW

Mt John University Observatory, Univ. of Canterbury, Private Bag 4800, Christchurch, New Zealand, e-mail: L.Watson@csc.canterbury.ac.nz

The variable star HD 6628 (SAO 166806, CPD -23° 130, HIP 5227, *IRAS*01043-2307, RE J010649 -225156; listed by *Simbad* as CS Ceti) has been previously listed (SAO catalogue) as a G5 IV single star, $M_{\rm V} = 7.9$ and $d = 75 \,\mathrm{pc}$. The *Hipparcos* magnitude and parallax (Schrijver 1997) are $M_{\rm V} = 7.77$ and $\pi = 0''.00756 \pm 0''.00108$ ($d = 132 \pm 22 \,\mathrm{pc}$). Schrijver (1997) lists HD 6628 as a variable single star with an amplitude of variation in V of 0.10 mag, and a period of 4.50 days, and a light curve has been fitted (Grenon, 1997) to the data. That HD 6628 is chromospherically active was shown by EUV emission in both the ROSAT (Pounds *et al.*, 1991; Pounds *et al.*, 1993; Mason *et al.*, 1995; Pye *et al.*, 1995; Kreysing *et al.*, 1995) and EUVE (Bowyer *et al.*, 1994; Malina *et al.*, 1994; Bowyer *et al.*, 1996) surveys, and has been confirmed by medium-resolution spectra of the H and K lines (Figure 1) obtained at the Mount John University Observatory (MJUO) at Lake Tekapo, New Zealand.

High-resolution CCD spectra of HD 6628 were obtained at MJUO between August 1993 and August 1996 using the 1 m McLellan telescope (Nankivell and Rumsey, 1986) and échelle spectrograph (Hearnshaw, 1977 and 1978). Most of the data are at H α which shows strong and variable emission, the line often appearing entirely in emission. A Th-Ar calibration spectrum was obtained immediately after each stellar spectrum. The spectra were reduced using the ESO Munich Image Data Analysis System (*MIDAS*), the dispersion solutions being computed using standard *MIDAS* procedures in the "échelle" context. Radial velocities were measured from metal lines, principally from the $\lambda 6200$, $\lambda 6219$, $\lambda 6394$, $\lambda 6569$ and $\lambda 6750$ lines of Fe I, and the $\lambda 6768$ line of Ni I. The mean velocities for the individual spectra are listed in Table I. The radial velocities were analysed using the *Orbsol* program as modified and supplied to MJUO by Tsevi Mazeh of Tel Aviv University. A period of 27.3316 ± 0.0079 days was found and Figure 2 shows the radial velocities of Table 1 plotted against the periodic phase. The best-fit orbital parameters as determined by the *Orbsol* program are listed in Table 2.

The Hipparcos parallax and V magnitude imply an absolute magnitude for the HD 6628 system of $M_V = 2.16 \pm 0.29$. Such a magnitude is consistent with the presence of two G5 IV stars of $M_V = 2.91$ each, but the fact that the spectra are single-lined and not double-lined implies that one of the stars is several magnitudes fainter than the other. We therefore prefer the interpretation that the star responsible for the observed metal lines is a G5 IV star of magnitude in the range $M_V = 2.5$ to 2.3, for example a star of greater than solar mass which is now a bright subgiant, and its companion is a main sequence star, possibly a spectral type F star.

Figure 1. Medium-resolution spectrum of the H and K lines of HD 6628, obtained at MJUO, 1995 December 30.

Figure 2. Phased radial velocities of HD 6628.

H.J.D.	Mean	Standard
	velocity	deviation
	(km/s)	(km/s)
2449204.20136	-11.058	0.548
2449290.02947	-11.173	1.285
2449539.02793	+2.355	0.360
2449579.20077	+47.712	0.967
2449622.11782	+8.425	0.905
2449639.92354	+7.869	0.544
2449641.99194	-11.588	0.511
2449859.21730	-0.627	0.540
2449860.24754	-11.270	0.954
2449916.12831	-17.814	0.205
2449941.09675	+1.822	0.102
2450011.89198	+36.646	0.588
2450012.97834	+38.892	0.072
2450075.98908	+22.879	1.375
2450081.91063	-20.505	3.043
2450111.94092	+1.621	2.029
2450263.14307	+46.259	2.251
2450294.23803	+29.388	1.042
2450295.13675	+16.519	1.781
2450308.07385	+17.792	1.032

Table 1: Radial velocities of HD 6628, computed from high-resolution spectra obtained at MJUO.

Figure 3. High-resolution spectrum of the H α line of HD 6628, obtained at MJUO, 1995 July 17.

Parameter	Value
P (days)	27.3316 ± 0.0079
$\gamma ~({\rm km/s})$	18.38 ± 0.59
$K (\rm km/s)$	13.99 ± 0.80
e	0.293 ± 0.026
Ω (°)	116.1 ± 4.0
Mass function (M_{\odot})	0.078 ± 0.012
$a\sin i$ (Gm)	11.49 ± 0.30

Table 2: Orbital parameters of HD 6628 as computed by the Orbsol program

A high-resolution $H\alpha$ spectrum (Figure 3), obtained at orbital phase 0.08 referred to Figure 2, shows the red wing of an $H\alpha$ absorption line having a radial velocity approximately 70–80 km/s greater than that of the metallic lines of the spectrum (-17.814 km/s) and, blueward of it, emission almost filling in a second absorption line. The radial velocity of the latter is measurable only very imprecisely, but it is of the same order as that of the metal-lines spectrum, and confirms that the observed metal lines and the $H\alpha$ emission belong to the G5 IV subgiant. The unfilled-in red absorption wing has a profile characteristic of an F-type dwarf and is attributed to the companion star.

References:

- Bowyer, S., et al., 1994, Astrophys. J. Suppl., 93, 569
- Bowyer, S., et al., 1996, Astrophys. J. Suppl., 102, 129
- Grenon, M., 1997, The Hipparcos Catalogue vol. 12, ESA Publications, Noordwijk.
- Hearnshaw, J. B., 1977, Proc. ASA, 3, 102
- Hearnshaw, J. B., 1978, Sky and Telescope, 56, 6
- Kreysing, H.-C., et al., 1995, Astron. & Astrophys. Suppl., 114, 465
- Malina, R. F., et al., 1994, Astron. J., 107, 751
- Mason, K. O., et al., 1995, Mon. Not. R. Astron. Soc., 274, 1194
- Nankivell, G. R., and Rumsey, N. J., 1986, Instrumentation and Research Programmes for Small Telescopes, IAU Symposium 118 ed. J. B. Hearnshaw and P. L. Cottrell, Reidel, Dortrecht, 101
- Pounds, K. A., et al., 1991, Mon. Not. R. Astron. Soc., 253, 364
- Pounds, K. A., et al., 1993, Mon. Not. R. Astron. Soc., 260, 77
- Pye, J. P., et al., 1995, Mon. Not. R. Astron. Soc., 274, 1165
- Schrijver, H., 1997, The Hipparcos Catalogue vol. 5, ESA Publications, Noordwijk.