COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

HAS THE δ SCUTI STAR BS Aqr A COMPANION?

FU JIAN-NING ${ }^{1}$, JIANG SHI-YANG ${ }^{1}$, GU SHENG-HONG ${ }^{2}$, QIU YU-LEI ${ }^{1}$
${ }^{1}$ Beijing Astronomical Observatory, Chinese Academy of Sciences, Beijing 100080, China
${ }^{2}$ Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011, China

The light variation of BS Aqr was discovered by Hoffmeister (1931). Since then, BS Aqr has been observed by many authors and become one of the 19δ Scuti stars which have reasonable long-time span observations for us to calculate their reliable period change rates (Jiang 1993). Yang et al. (1993) collected 48 times of light maximum for this star in the literature and provided a new one determined by themselves.

We observed BS Aqr on December 20, 1995 in Xinglong station of Beijing Astronomical Observatory with a 60 cm telescope and its CCD camera. One new moment of light maximum was derived and then all the times are listed in Table 1 with 50 data points over more than six decades.

With the times of light maxima of BS Aqr which are listed in Table 1, the linear fit is used to determine the calculated light maxima by the formula of $C_{l}=T_{01}+P_{01} E$. The results of fitting are: $T_{01}=$ HJD2428095.3346, $P_{01}=0.197822612$ days. The values of $(\mathrm{O}-\mathrm{C})_{l}$ are also listed in Table 1. The residual obtained $\left(\sigma_{01}\right)$ is 0.0043 days. Then the quadratic curve is used to fit the data as: $C_{Q}=T_{02}+P_{02} E+0.5 \beta_{01} E^{2}$. The fitting parameters are: $T_{02}=$ HJD2428095.3319, $P_{02}=0.197822744$ days, $\beta_{01}=-1.2 \times 10^{-12}$ days/cycle, with the residual $\left(\sigma_{02}\right)$ of 0.0044 days. The $(\mathrm{O}-\mathrm{C})_{l}$ diagram and the fit curve using the quadratic function are shown in Figure 1 (a).

From this figure, one may find that the fit is not good, and the differences between the points and the curve may imply another intrinsic periodic variation. Thus, the formula of $C_{\text {orb }}=T_{03}+P_{03} E+0.5 \beta_{02} E^{2}+A \sin \phi+B \cos \phi$ is used to fit the original times of light maxima, where ϕ is the solution of $\phi-e \sin \phi=2 \pi f\left(P_{03} E-\tau\right)$. The related parameters are determined as: $T_{03}=$ HJD2428095.3320, $P_{03}=0.197822675$ days, $\beta_{02}=-0.5 \times 10^{-12}$ days/cycle, $A=-0.0040$ days, $B=0.0001$ days, $P_{\text {orb }}=34.05$ years, $e=0.5$, and $\sigma_{03}=0.0036$ days. The $\mathrm{O}-\mathrm{C}$ diagram and the fit curve using both the quadratic and the trigonometric functions are shown in Figure 1 (b).

From Figure 1 and the comparison of the residuals after different fits, one may find that the model of explaining the discrepancies between the observed and calculated times of maximum light as the consequence of a continuously changing (decreasing) period, combined with the light-time effect caused by the orbital motion of BS Aqr around the mass center of a binary system with an unseen companion, is reasonable.

Based on the coefficients provided by the fitting, some additional parameters of the binary system of BS Aqr can be estimated. The projection of the orbit radius: $a_{1} \sin i \approx$ $\approx 0.699 \mathrm{AU}$; the mean velocity of the primary star projecting on the orbit: $K \approx$ $\approx 0.61 \mathrm{~km} \mathrm{~s}^{-1}$; the mass function: $f(m) \approx 0.00029$. Under the values of the mass and the radius of BS Aqr: $M_{1}=1.89 M_{\odot}, R_{1}=4.04 R_{\odot}$ (McNamara \& Feltz 1978), the semi-major axis of the orbit and the mass of the companion are derived with different inclination angles and the result is listed in Table 2.

Obviously, more observations are needed to check the binary hypothesis for BS Aqr. However, since the calculated orbital radial velocity amplitude (K) is very small, the spectroscopic measurements might not be very helpful to confirm the binary model for BS Aqr.

There is an interesting possibility to determine the pulsation constant (Jørgensen \& Grønbech, 1978). Combining Kepler's third law and the pulsation constant formula,

$$
\frac{a^{3}}{P_{o r b}^{2}}=\frac{G}{4 \pi^{2}}\left(M_{1}+M_{2}\right), \text { and } Q=P_{p u l}\left(\frac{M_{1}}{R_{1}^{3}}\right)^{1 / 2}
$$

we obtain

$$
Q=0.1159 \frac{P_{p u l}}{P_{\text {orb }}}\left(\frac{R_{1}}{a}\right)^{-3 / 2}\left(1+\frac{M_{2}}{M_{1}}\right)^{-1 / 2}
$$

Figure 1. The $\mathrm{O}-\mathrm{C}$ diagrams and the fit curves by using (a) the quadratic function, and (b) both the quadratic and the trigonometric functions for BS Aqr

Table 1: Times of light maxima of BS Aqr

No.	$\begin{gathered} \hline \text { HJD } \\ (2400000.0+) \end{gathered}$	E	$\begin{gathered} \hline(\mathrm{O}-\mathrm{C})_{l} \\ \text { (day) } \\ \hline \end{gathered}$	W	Ref.	No.	$\begin{gathered} \hline \text { HJD } \\ (2400000.0+) \end{gathered}$	E	$\begin{gathered} \hline(\mathrm{O}-\mathrm{C})_{l} \\ \text { (day) } \\ \hline \end{gathered}$	W	Ref.
1	28095.3380	0.0	0.0033	1.0	An	26	37584.2934	47967.0	0.0015	0.5	TS
2	29111.7450	5138.0	-0.0022	1.0	As	27	37584.4924	47968.0	0.0027	0.5	TS
3	29899.2660	9119.0	-0.0131	1.0	Sa	28	37911.4916	49621.0	0.0011	0.5	TS
4	30187.3040	10575.0	-0.0048	1.0	Sa	29	37932.4617	49727.0	0.0020	0.5	TS
5	33027.4460	24932.0	-0.0020	1.0	Sa	30	37933.4552	49732.0	0.0064	0.5	TS
6	33862.4600	29153.0	0.0027	1.0	Sa	31	37934.4383	49737.0	0.0004	0.5	TS
7	33888.3650	29284.0	-0.0070	1.0	Sa	32	37946.3083	49797.0	0.0010	0.5	TS
8	34211.4220	30917.0	0.0056	1.0	Sa	33	37947.2960	49802.0	-0.0004	0.1	TS
9	34400.3350	31872.0	-0.0019	1.0	Sa	34	39087.1561	55564.0	0.0058	0.5	HP
10	34961.3660	34708.0	0.0041	1.0	Sa	35	41946.6714	70019.0	-0.0047	0.6	El
11	35631.3920	38095.0	0.0049	1.0	Sa	36	41946.8693	70020.0	-0.0047	0.5	El
12	35696.4720	38424.0	0.0013	1.0	Sa	37	41947.6620	70024.0	-0.0032	1.0	El
13	36040.0771	40161.0	-0.0115	0.1	Ki	38	41947.8603	70025.0	-0.0028	0.5	El
14	36300.4260	41477.0	0.0029	1.0	Sa	39	41948.6500	70029.0	-0.0044	0.5	El
15	36458.0904	42274.0	0.0026	1.0	Sp	40	41948.8489	70030.0	-0.0033	0.5	El
16	36460.8540	42288.0	-0.0033	0.3	Sp	41	41949.6400	70034.0	-0.0035	0.5	El
17	36461.8475	42293.0	0.0011	0.5	Sp	42	41950.6300	70039.0	-0.0026	1.0	El
18	36874.1120	44377.0	0.0033	0.5	Ki	43	41950.8295	70040.0	-0.0009	0.5	El
19	37561.3491	47851.0	0.0046	0.5	TS	44	45612.7240	88551.0	-0.0008	1.0	Me
20	37561.5445	47852.0	0.0022	0.5	TS	45	45620.6380	88591.0	0.0003	1.0	Me
21	37562.5345	47857.0	0.0031	0.5	TS	46	45625.5830	88616.0	-0.0003	1.0	Me
22	37563.5242	47862.0	0.0037	0.5	TS	47	45637.6470	88677.0	-0.0034	1.0	Me
23	37564.5156	47867.0	0.0060	0.5	TS	48	45644.5720	88712.0	-0.0022	1.0	Me
24	37582.5180	47958.0	0.0065	0.5	TS	49	45997.0920	90494.0	-0.0021	1.0	Ya
25	37583.3105	47962.0	0.0077	0.5	TS	50	50072.0441	111093.0	0.0020	1.5	pp
*An:	Andrews (1936)			*pp:		present paper					
* As:	Ashbrook (1943)			*Sa:		Satanova (1961)					
*El:	Elst (1976)			*Sp:		Spinrad (1959)					
*HP:	Harding and Penston (1966)			*TS:		Tremko and Sajtak (1964)					
*Ki:	Kinman (1961)			*Ya:		Yang et al. (1993)					
*Me:	Meylan et	l. (1986)									

Table 2: Inclination, semi-major axis of the orbit and mass of the companion of BS Aqr

$\mathrm{i}(\mathrm{deg})$	$\mathrm{a}(\mathrm{AU})$	$\mathrm{M}_{2}\left(\mathrm{M}_{\odot}\right)$
10	14.74	0.726
20	13.70	0.330
30	13.47	0.218
40	13.36	0.167
50	13.30	0.139
60	13.26	0.122
70	13.24	0.112
80	13.23	0.107
90	13.22	0.105

Adopting $P_{\text {pul }}=0.197822675$ days, $P_{\text {orb }}=12436$ days, $M_{1}=1.89 M_{\odot}, R_{1}=4.04 R_{\odot}$, $a=13.5 \mathrm{AU}$ (see Table 2), and $M_{2}=0.105 \sim 0.330 M_{\odot}$ (the value of $0.726 M_{\odot}$ is too big, due to the fact that we have not seen its light), the pulsation constant is calculated: $Q \approx 0.034$. This value corresponds to the radial fundamental mode (e.g. Petersen and Jørgensen 1972).

This work was supported by the Natural Science Foundation of Jiangxi Province of China.

References:

Andrews L.B. 1936, Bull. Harvard Obs. 902, 27
Ashbrook J. 1943, Bull. Harvard Obs. 917, 10
Elst E.W. 1976, A\&A Suppl. Ser. 23, 419
Harding G.A., Penston M.J. 1966, Royal Obs. Bull. No. 115
Hoffmeister C. 1931, Astron. Nachr. 242, 128
Jiang S.Y. 1993, Astrophysics and Space Science, 210, 189
Jørgensen H.E., and Grønbech B. 1978, A\&A, 66, 377
Kinman T.D. 1961, Royal Obs. Bull. No. 37
McNamara D.H., and Feltz Jr.K.A. 1978, PASP, 90, 275
Meylan G., Burki G., Rufener F., Mayor M., Burnet M. and Ischi E. 1986, A\&A Suppl. Ser., 64, 25
Petersen J.O., Jørgensen H.E. 1972, A\&A, 17, 367
Satanova E.A. 1961, Perem. Zvezdy, 13, 266
Spinrad D. 1959, ApJ, 130, 539
Tremko J., Sajtak D. 1964, Bull. Astron. Inst. Czech. 15, 91
Yang D.W., Tang Q.Q., Jiang S.Y., and Wang H.S. 1993, IBVS, No. 3831

