COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4421

Konkoly Observatory Budapest 16 January 1997 *HU ISSN 0374 - 0676*

PHOTOELECTRIC BVI_C OBSERVATIONS AND A NEW CLASSIFICATION FOR V804 ARAE

V804 Ara was included in our program of photoelectric observations for Cepheids because it is classified in GCVS-IV as a possible Cepheid. We observed the star at CTIO during the period September-November 1996 using the 1.0-m reflector. A total of 30 BVI_c measurements were obtained (Table 1), the accuracy of the individual data being near $\pm 0^{\circ}$ 02 in all filters.

Our observations are plotted in Figure 1. The data indicate a range of light variability of 0^{m} 50 in V, 0^{m} 15 in B - V and 0^{m} 30 in $V-I_{c}$, but the star cannot be a Cepheid because, first, changes in B - V color are asynchronous with the changes in V – which is atypical of Cepheids – and second, it has a very large infrared excess. It seems more likely that V804 Ara is a semiregular variable.

Table 1							
JD_{hel}	V	B-V	$V-I_c$	JD_{hel}	V	B-V	$V-I_c$
2450300 +				2450300 +			
48.5687	13.165	1.605	3.325	80.5499	13.471	1.531	3.533
50.6595	13.205	1.595	3.310	81.5341	13.472	1.491	3.527
51.5575	13.118	1.657	3.282	82.5295	13.494	1.486	3.505
52.5768	13.122	_	3.283	83.5303	13.421	1.592	3.493
53.5251	13.073	1.594	3.247	84.5372	13.379	_	3.453
54.5386	13.099	1.594	3.296	85.5161	13.401	1.537	3.477
55.5262	13.079	1.608	3.282	85.5183	13.424	1.565	3.471
57.5245	13.034	1.622	3.258	86.5265	13.330	1.558	3.451
58.5286	13.044	1.618	3.249	87.5219	13.420	1.605	3.473
59.5219	13.049	1.581	3.268	88.5254	13.370	1.560	3.466
60.5278	13.079	1.588	3.279	89.5250	13.302	1.546	3.409
61.5347	13.065	1.650	3.262	90.5201	13.343	1.592	3.453
62.5313	13.093	1.585	3.281	91.5201	13.328	1.540	3.442
63.5327	13.105	1.592	3.305	92.5142	13.303	1.623	3.422
79.5499	13.424	1.562	3.499	93.5171	13.325	1.617	3.435

Figure 1

The research described here was made possible in part by grants No. 95–02–05276 and No. 94–02–04347 from the Russian Foundation of Basic Research to LNB and through NSERC Canada to DGT. The authors were Visiting Astronomers at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

L.N. BERDNIKOV Sternberg Astronomical Institute 13, Universitetskij prosp. Moscow 119899, Russia

D.G. TURNER Saint Mary's University Halifax, Nova Scotia, B3H 3C3 Canada