COMMISSION 27 OF THE I. A. U. INFORMATION BULLETIN ON VARIABLE STARS

Number 2166

Konkoly Observatory Budapest 1982 June 21 HU ISSN 0374-0676

UV by PHOTOMETRY OF THE ALGOL VARIABLE HD 224113

The Algol nature of HD 224113 = HR 9049 (85V, V=6.08, B-V=-.09) was discovered by Haefner (1981). From uvby photometry obtained in 1970 he derived a value for the orbital period of 2.445088. The incomplete lightcurve reveals reflection or ellipticity effects, and evidence of gas streams may be present.

We here present in tabular form a sequence of 4-colour measurements obtained at the Danish 50cm telescope on La Silla in October 1981. The measurements have been obtained in a differential way, using two comparison stars:

The star was measured repeatedly during 8 nights between Oct. 9 and Oct. 18 1981.

Table I gives heliocentric Julian dates, and differences between HD 224113 and HD 224112 (V=6.84, b-y=-.032, m_1 =.116, c_1 =.670) in the standard system of Crawford et al. (1970). The mean error on one single differential measurement in ΔV , $\Delta (b-y)$, Δm_1 and Δc_1 are resp. .0027, .0028, .0039 and .0040 magnitudes. The steep decline visible in V on JD2444896 (.1 magnitude in about 80 minutes) represents part of the descending branch of the primary minimum . The dispersion of the ΔV -values outside eclipse exceeds two times the statistical mean error on one measurement as deduced from the differences between the comparison star measurements. This scatter is due to proximity effects.

Table I

JD 2444800	۷Δ	∆(b-y)	$^{ extsf{DM}_1}$	$^{\Delta c_1}$	JD 2444800	۷Δ	∆(b-y)	$\Delta \mathfrak{m}_1$	$^{\Delta c_1}$
87.6190	749	007	008	116	92.5474	746	003	014	109
87.6429	751	008	005	115	92.5628	747	004	011	112
88.5648	750	007	005	117	92.5790	746	007	007	110
88.5862	752	004	012	115	92.5893	744	008	007	110
88.6137	751	008	004	119	92.5982	746	900	008	111
88.6273	749	007	009	117	95.5363	744	004	014	113
88.6443	748	008	900	121	95.5514	745	007	008	116
89.5439	741	002	014	113	95.5662	751	003	013	111
89.5685	745	002	011	113	95.5804	743	008	900	112
89.5818	742	900	009	107	95.5945	745	009	004	112
89.5912	742	004	011	115	95.6394	748	008	003	118
90.5430	738	900	009	106	95.6589	748	007	900	117
90.5567	742	900	-,008	107	95.6750	747	900	010	112
90.5721	743	007	011	104	95.6898	750	005	010	116
90.5870	744	003	013	107	95.7075	749	003	013	116
90.5993	742	008	007	109	96.5404	629	003	011	110
91.5467	735	+.000	017	109	96.5540	598	003	005	113
91.5642	735	004	007	116	96.5702	562	008	000	112
91.5754	734	004	011	110	96.5863	544	000	010	115
91.5851	736	003	007	112	96.5969	533	004	005	112
91.5980	729	005	900	114					

C. STERKEN

Astrophysical Institute, Vrije Universiteit Brussel

References:

Crawford, D.L., Barnes, J.V., Golson, J.C. 1970, Astron.J. <u>75</u>, 624

Haefner, R. 1981, Comm. 27, IAU Inf. Bull. Var. Stars No. 1996.